Advanced Process Integration and Design at University of Manchester - UCAS

Course options

Course summary

A specialised master's in Chemical Engineering, the MSc Advanced Process Integration and Design started in the Department of Chemical Engineering (UMIST) over twenty years ago. The programme was a result of emerging research from the Centre for Process Integration, initially focused on energy efficiency, but expanded to include efficient use of raw materials and emissions reduction. Much of the content of the course stems from research related to energy production, including oil and gas processing. The MSc Advanced Process Integration and Design aims to enable students with a prior qualification in chemical engineering to acquire a deep and systematic conceptual understanding of the principles of process design and integration in relation to the petroleum, gas and chemicals sectors of the process industries. Overview of course structure and content In the first trimester, all students take course units on energy systems, utility systems and computer aided process design. Energy Systems develops systematic methods for designing heat recovery systems, while Utility Systems focuses on provision of heat and power in the process industries. Computer Aided Process Design develops skills for modelling and optimisation of chemical processes. In the second trimester, the students choose three elective units from a range covering reaction systems, distillation systems, distributed and renewable energy systems, biorefining, and oil and gas processing. These units focus on design, optimisation and integration of process technologies and their associated heat and power supply systems. In two research-related units, students develop their research skills and prepare a proposal for their research project. These units develop students skills in critical assessment of research literature, group work, written and oral communication, time management and research planning. Students then carry out the research project during the third trimester. In these projects, students apply their knowledge and skills in process design and integration to investigate a wide range of process technologies and design methodologies. Recent projects have addressed modelling, assessment and optimisation of petroleum refinery hydrotreating processes, crude oil distillation systems, power plants, waste heat recovery systems, refrigeration cycles with mixed refrigerants, heat recovery steam generators, biorefining and biocatalytic processes and waste-to-energy technologies. The course also aims to develop students' skills in implementing engineering models, optimisation and process simulation, in the context of chemical processes, using bespoke and commercially available software. Manchester Engineering Campus Development (MECD) , the University of Manchester's new £400m purpose built home for engineering and material science, is nearing completion. The physical move to the new development is scheduled to take place between January 2022 and December 2022. Whilst it is anticipated that access to equipment, or work on projects for which such access is required may be limited during the period of the move, plans are underway to ensure that any disruption caused is minimised, a wide selection of dissertation projects will continue to be available, and excellent student experience remains pivotal. If you have any questions about how the move may affect you, please contact [email protected]

Professional bodies

Professionally accredited courses provide industry-wide recognition of the quality of your qualification.

  • Chemical Engineers, Institution of

How to apply

International applicants

This course has a subject classification which requires students whose nationality is outside the European Economic Area (EEA) or Switzerland to have an ATAS certificate, irrespective of country of residence at the point of application.

Further information can be found on the UK Government's website: www.gov.uk/academic-technology-approval-scheme

Entry requirements

A 2(i) (upper second class honours) first degree in a relevant discipline, or equivalent qualifications/experience. Applicants with a high 2(ii) will be considered and are welcome to apply.


Fees and funding

Tuition fees

No fee information has been provided for this course

Additional fee information

Fees for entry in 2023 have not yet been set.
Advanced Process Integration and Design at University of Manchester - UCAS